Nuclear exclusion of Cdc25 is not required for the DNA damage checkpoint in fission yeast
نویسندگان
چکیده
Maintenance of genome integrity requires a checkpoint that restrains mitosis in response to DNA damage [1]. This checkpoint is enforced by Chk1, a protein kinase that targets Cdc25 [2--7]. Phosphorylated Cdc25 associates with 14-3-3 proteins, which appear to occlude a nuclear localization signal (NLS) and thereby inhibit Cdc25 nuclear import [6, 8--14]. Proficient checkpoint arrest is thought to require Cdc25 nuclear exclusion, although definitive evidence for this model is lacking. We have tested this hypothesis in fission yeast. We show that elimination of an NLS in Cdc25 causes Cdc25 nuclear exclusion and a mitotic delay, as predicted by the model. Attachment of an exogenous NLS forces nuclear inclusion of Cdc25 in damaged cells. However, forced nuclear localization of Cdc25 fails to override the damage checkpoint. Thus, nuclear exclusion of Cdc25 is unnecessary for checkpoint enforcement. We propose that direct inhibition of Cdc25 phosphatase activity by Chk1, as demonstrated in vitro with fission yeast and human Chk1 [15, 16], is sufficient for proficient checkpoint regulation of Cdc25 and may be the primary mechanism of checkpoint enforcement in fission yeast.
منابع مشابه
p56chk1 protein kinase is required for the DNA replication checkpoint at 37C in fission yeast
the timing of mitosis is determined by a gradual change Stefania Francesconi1, Muriel Grenon, in the wee1/cdc25 ratio. This ratio influences the cell size Dominique Bouvier and Giuseppe Baldacci at division and maintains the dependence of mitosis on IFC 1, Institut de Recherche sur le Cancer, CNRS UPR 9044, the completion of DNA replication (Enoch and Nurse, 7 rue Guy Moquet BP 8, 94801 Villeju...
متن کاملCaffeine-mediated override of checkpoint controls. A requirement for rhp6 (Schizosaccharomyces pombe).
Cells exposed to inhibitors of DNA synthesis or suffering DNA damage are arrested or delayed in interphase through the action of checkpoint controls. If the arrested cell is exposed to caffeine, relatively normal cell cycle progression is resumed and, as observed in checkpoint control mutants, loss of checkpoint control activity is associated with a reduction in cell viability. To address the m...
متن کاملSerine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast.
Genome integrity is monitored by a checkpoint that delays mitosis in response to DNA damage. This checkpoint is enforced by Chk1, a protein kinase that inhibits the mitotic inducer Cdc25. In fission yeast, Chk1 is regulated by a group of proteins that includes Rad3, a protein kinase related to human ATM and ATR. These kinases phosphorylate serine or threonine followed by glutamine (SQ/TQ). Fiss...
متن کاملThe fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkp...
متن کاملCdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast.
A common cellular response to DNA damage is cell cycle arrest. This checkpoint control has been the subject of intensive genetic investigation, but the biochemical mechanism that prevents mitosis following DNA damage is unknown. In Schizosaccharomyces pombe, as well as vertebrates, the timing of mitosis under normal circumstances is determined by the balance of kinases and phosphatases that reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001